Sarcomere Lattice Geometry Influences Cooperative Myosin Binding in Muscle
نویسندگان
چکیده
In muscle, force emerges from myosin binding with actin (forming a cross-bridge). This actomyosin binding depends upon myofilament geometry, kinetics of thin-filament Ca(2+) activation, and kinetics of cross-bridge cycling. Binding occurs within a compliant network of protein filaments where there is mechanical coupling between myosins along the thick-filament backbone and between actin monomers along the thin filament. Such mechanical coupling precludes using ordinary differential equation models when examining the effects of lattice geometry, kinetics, or compliance on force production. This study uses two stochastically driven, spatially explicit models to predict levels of cross-bridge binding, force, thin-filament Ca(2+) activation, and ATP utilization. One model incorporates the 2-to-1 ratio of thin to thick filaments of vertebrate striated muscle (multi-filament model), while the other comprises only one thick and one thin filament (two-filament model). Simulations comparing these models show that the multi-filament predictions of force, fractional cross-bridge binding, and cross-bridge turnover are more consistent with published experimental values. Furthermore, the values predicted by the multi-filament model are greater than those values predicted by the two-filament model. These increases are larger than the relative increase of potential inter-filament interactions in the multi-filament model versus the two-filament model. This amplification of coordinated cross-bridge binding and cycling indicates a mechanism of cooperativity that depends on sarcomere lattice geometry, specifically the ratio and arrangement of myofilaments.
منابع مشابه
Strong Binding of Myosin Modulates Length-Dependent Ca Activation of Rat Ventricular Myocytes
Reductions in sarcomere length (SL) and concomitant increases in interfilament lattice spacing have been shown to decrease the Ca sensitivity of tension in myocardium. We tested the idea that increased lattice spacing influences the SL dependence of isometric tension by reducing the probability of strong interactions of myosin crossbridges with actin, thereby decreasing cooperative activation o...
متن کاملStrong binding of myosin modulates length-dependent Ca2+ activation of rat ventricular myocytes.
Reductions in sarcomere length (SL) and concomitant increases in interfilament lattice spacing have been shown to decrease the Ca2+ sensitivity of tension in myocardium. We tested the idea that increased lattice spacing influences the SL dependence of isometric tension by reducing the probability of strong interactions of myosin crossbridges with actin, thereby decreasing cooperative activation...
متن کاملThe length-tension curve in muscle depends on lattice spacing.
Classic interpretations of the striated muscle length-tension curve focus on how force varies with overlap of thin (actin) and thick (myosin) filaments. New models of sarcomere geometry and experiments with skinned synchronous insect flight muscle suggest that changes in the radial distance between the actin and myosin filaments, the filament lattice spacing, are responsible for between 20% and...
متن کاملMyosin MgADP release rate decreases at longer sarcomere length to prolong myosin attachment time in skinned rat myocardium.
Cardiac contractility increases as sarcomere length increases, suggesting that intrinsic molecular mechanisms underlie the Frank-Starling relationship to confer increased cardiac output with greater ventricular filling. The capacity of myosin to bind with actin and generate force in a muscle cell is Ca(2+) regulated by thin-filament proteins and spatially regulated by sarcomere length as thick-...
متن کاملFilament Compliance Influences Cooperative Activation of Thin Filaments and the Dynamics of Force Production in Skeletal Muscle
Striated muscle contraction is a highly cooperative process initiated by Ca²⁺ binding to the troponin complex, which leads to tropomyosin movement and myosin cross-bridge (XB) formation along thin filaments. Experimental and computational studies suggest skeletal muscle fiber activation is greatly augmented by cooperative interactions between neighboring thin filament regulatory units (RU-RU co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Computational Biology
دوره 3 شماره
صفحات -
تاریخ انتشار 2007